

## SANYO Semiconductors DATA SHEET

# LC87F1D64A — FROM 64K byte, RAM 4K byte on-chip

**CMOSIC** 

## 8-bit 1-chip Microcontroller with Full-Speed USB

#### Overview

The SANYO LC87F1D64A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 62.5ns, integrates on a single chip a number of hardware features such as 64K-byte flash ROM (onboard programmable), 4096-byte RAM, an on-chip debugger, a sophisticated 16-bit timers/counters (may be divided into 8-bit timers), 16-bit timers/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a high-speed clock counter, two synchronous SIO interface (with automatic block transmit/receive function), an asynchronous/synchronous SIO interface, a UART interface (full duplex), a Full-Speed USB interface (function controller), 12-channel 12-bit A/D converter with 12-/8-bit resolution selector, two 12-bit PWM channels, a system clock frequency divider, an infrared remote control receiver circuit, and a 30-source 10vector address interrupt feature.

#### **Features**

- ■Flash ROM
  - Capable of on-board-programming with wide range, 3.0 to 5.5V, of voltage source.
  - Block-erasable in 128 byte units
  - Writes data in 2-byte units
  - $65536 \times 8$  bits

#### ■RAM

- $4096 \times 9$  bits
- ■Minimum Bus Cycle
  - 62.5ns (CF=16MHz)

Note: The bus cycle time here refers to the ROM read speed.

- This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

### **SANYO Semiconductor Co., Ltd.**

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

#### ■Minimum Instruction Cycle Time

• 188ns (CF=16MHz)

#### ■Ports

• I/O ports

Ports whose I/O direction can be designated in 1 bit units 28 (P10 to P17, P20 to P27, P30 to P34,

P70 to P73, PWM0, PWM1, XT2)

Ports whose I/O direction can be designated in 4 bit units 8 (P00 to P07)

USB ports
 Dedicated oscillator ports
 Input-only port (also used for oscillation)
 Reset pins
 2 (CF1, CF2)
 1 (XT1)
 RES)

• Power pins 6 (VSS1 to 3, VDD1 to 3)

#### **■**Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

× 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer
  - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
  - 2) Interrupts programmable in 5 different time schemes

#### **■**SIO

- SIO0: Synchronous serial interface
  - 1) LSB first/MSB first mode selectable
  - 2) Transfer clock cycle: 4/3 to 512/3 tCYC
  - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
  - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
  - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
  - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
  - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)
- SIO4: Synchronous serial interface
  - 1) LSB first/MSB first mode selectable
  - 2) Transfer clock cycle: 4/3 to 1020/3 tCYC
- 3) Automatic continuous data transmission (1 to 4096 bytes, specifiable in 1 byte units, suspension and resumption of data transmission possible in 1 byte or 2 bytes units)
- 4) Auto-start-on-falling-edge function
- 5) Clock polarity selectable
- 6) CRC16 calculator circuit built in

### ■Full Duplex UART

• UART1

1) Data length: 7/8/9 bits selectable

2) Stop bits: 1 bit (2 bits in continuous transmission mode)

3) Baud rate: 16/3 to 8192/3 tCYC

• UART2

1) Data length: 7/8/9 bits selectable

2) Stop bits: 1 bit (2 bits in continuous transmission mode)

3) Baud rate: 16/3 to 8192/3 tCYC

■AD Converter: 12 bits × 12 channels

• 12/8 bits AD converter resolution selectable

■PWM: Multifrequency 12-bit PWM × 2 channels

#### ■Infrared Remote Control Receiver Circuit

 Noise reduction function (noise filter time constant: Approx. 120μs, when the 32.768kHz crystal oscillator is selected as the reference voltage source.)

- 2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding
- 3) X'tal HOLD mode release function

#### ■USB Interface (function controller)

- Compliant with USB 2.0 Full-Speed
- Supports a maximum of 4 user-defined endpoints.

| Endpoint     |             | EP0 | EP1 | EP2 | EP3 | EP4 |
|--------------|-------------|-----|-----|-----|-----|-----|
| Transfer     | Control     | 0   | -   | -   | -   | -   |
| Туре         | Bulk        | -   | 0   | 0   | 0   | 0   |
|              | Interrupt   | -   | 0   | 0   | 0   | 0   |
|              | Isochronous | -   | 0   | 0   | 0   | 0   |
| Max. payload |             | 64  | 64  | 64  | 64  | 64  |

#### ■Watchdog Timer

- External RC watchdog timer
  - 1) Interrupt and reset signals selectable
- Internal counter watchdog timer
  - 1) Generates an internal reset signal on overflow occurring in a timer that runs on a dedicated low-speed RC oscillator clock (30kHz).
  - 2) Three operating modes are selectable: continues counting, stops counting, or retains count when the CPU

#### ■Clock Output Function

- 1) Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
- 2) Able to output oscillation clock of sub clock.

#### **■**Interrupts

- 30 sources, 10 vector addresses
  - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
  - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

| No. | Vector Address | Level  | Interrupt Source                                             |
|-----|----------------|--------|--------------------------------------------------------------|
| 1   | 00003H         | X or L | INT0                                                         |
| 2   | 0000BH         | X or L | INT1                                                         |
| 3   | 00013H         | H or L | INT2/T0L/INT4/USB bus active/remote control receiver         |
| 4   | 0001BH         | H or L | INT3/INT5/base timer                                         |
| 5   | 00023H         | H or L | ТОН                                                          |
| 6   | 0002BH         | H or L | T1L/T1H                                                      |
| 7   | 00033H         | H or L | SIO0/USB bus reset/USB suspend/UART1 receive/UART2 receive   |
| 8   | 0003BH         | H or L | SIO1/USB endpoint/USB-SOF/SIO4/UART1 transmit/UART2 transmit |
| 9   | 00043H         | H or L | ADC/T6/T7                                                    |
| 10  | 0004BH         | H or L | Port 0/PWM0/PWM1                                             |

- Priority Level: X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 2048 levels (the stack is allocated in RAM.)
- ■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time

#### ■Oscillation Circuits

RC oscillation circuit (internal): For system clock (1MHz)
 Low-speed RC oscillation circuit (internal): For watchdog timer (30kHz)

• CF oscillation circuit: For system clock

Crystal oscillation circuit: For system clock, time-of-day clock
 PLL circuit (internal): For USB interface (see Fig.5)

### ■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
  - 1) Oscillation is not halted automatically.
  - 2) There are three ways of resetting the HOLD mode.
    - (1) Setting the reset pin to the low level
    - (2) Reset generated by watchdog timer
    - (3) Interrupt generation
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
  - 1) The PLL base clock generator, CF, RC and crystal oscillators automatically stop operation.
  - 2) There are five ways of resetting the HOLD mode.
    - (1) Setting the reset pin to the lower level.
    - (2) Reset generated by watchdog timer
    - (3) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
    - (4) Having an interrupt source established at port 0
    - (5) Having an bus active interrupt source established in the USB interface circuit

Continued on next page.

#### Continued from preceding page.

- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and the infrared remote control receiver circuit.
  - 1) The PLL base clock generator, CF and RC oscillator automatically stop operation.
  - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
  - 3) There are seven ways of resetting the X'tal HOLD mode.
    - (1) Setting the reset pin to the low level
    - (2) Reset generated by watchdog timer
    - (3) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
    - (4) Having an interrupt source established at port 0
    - (5) Having an interrupt source established in the base timer circuit
    - (6) Having an bus active interrupt source established in the USB interface circuit
    - (7) Having an interrupt source established in the infrared remote control receiver circuit

#### ■Package Form

• TQFP48J(7×7): Lead-/Halogen-free type

#### **■**Development Tools

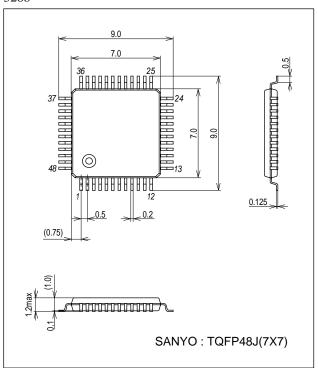
• On-chip debugger: TCB87 type B + LC87F1D64A

#### ■Flash ROM Programming Boards

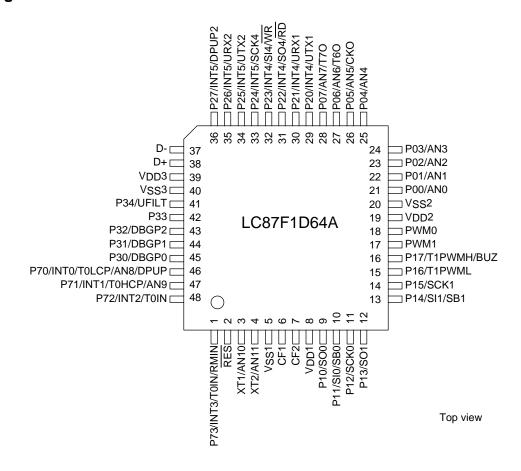
| Package      | Programming boards |
|--------------|--------------------|
| TQFP48J(7×7) | W87F55256SQ        |

#### ■Flash ROM Programmer

|                                              |                                                                                 | Supported version                                                                                                                                                                                                                                                                     | Device                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single<br>Programmer                         | AF9708 AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)        | Rev.03.06 or later                                                                                                                                                                                                                                                                    | LC87F1D64A                                                                                                                                                                                                                                                                                                                                                                                                       |
| In-circuit<br>Programmer                     | AF9101/AF9103 (main body) (FSG models)  SIB87 (Inter Face Driver) (SANYO model) | (Note 2)                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Single/Gang<br>Programmer<br>In-circuit/Gang | SKK/SKK Type B (SANYO FWS) SKK-DBG Type B                                       | Application Version<br>1.04 or later<br>Chip Data Version                                                                                                                                                                                                                             | LC87F1D64                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | Programmer  In-circuit Programmer  Single/Gang Programmer                       | Single Programmer  AF9709/AF9709B/AF9709C  (Including Ando Electric Co., Ltd. models)  AF9101/AF9103 (main body)  (FSG models)  Programmer  SIB87 (Inter Face Driver)  (SANYO model)  Single/Gang Programmer  SKK/SKK Type B  Programmer  (SANYO FWS)  In-circuit/Gang SKK-DBG Type B | Single Programmer         AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)         Rev.03.06 or later           In-circuit Programmer         SIB87 (Inter Face Driver) (SANYO model)         (Note 2)           Single/Gang Programmer         SKK/SKK Type B (SANYO FWS)         Application Version 1.04 or later           In-circuit/Gang         SKK-DBG Type B         Chip Data Version |


Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from SANYO (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or SANYO for the information.

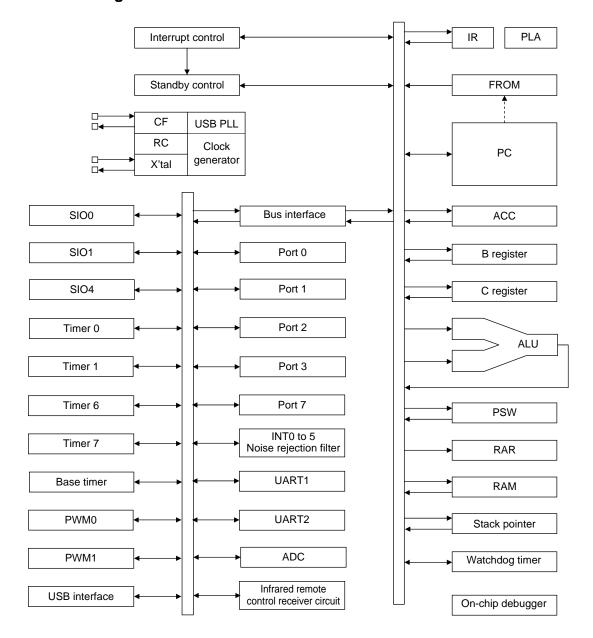

### **Package Dimensions**

unit: mm (typ)

3288



## **Pin Assignment**




SANYO: TQFP48J(7×7) "Lead-/ Halogen-free Type"

| TQFP48J | NAME               |
|---------|--------------------|
| 1       | P73/INT3/T0IN/RMIN |
| 2       | RES                |
| 3       | XT1/AN10           |
| 4       | XT2/AN11           |
| 5       | V <sub>SS</sub> 1  |
| 6       | CF1                |
| 7       | CF2                |
| 8       | V <sub>DD</sub> 1  |
| 9       | P10/S00            |
| 10      | P11/SI0/SB0        |
| 11      | P12/SCK0           |
| 12      | P13/SO1            |
| 13      | P14/SI1/SB1        |
| 14      | P15/SCK1           |
| 15      | P16/T1PWML         |
| 16      | P17/T1PWMH/BUZ     |
| 17      | PWM1               |
| 18      | PWM0               |
| 19      | V <sub>DD</sub> 2  |
| 20      | V <sub>SS</sub> 2  |
| 21      | P00/AN0            |
| 22      | P01/AN1            |
| 23      | P02/AN2            |
| 24      | P03/AN3            |

| TQFP48J | NAME                    |
|---------|-------------------------|
| 25      | P04/AN4                 |
| 26      | P05/AN5/CKO             |
| 27      | P06/AN6/T6O             |
| 28      | P07/AN7/T7O             |
| 29      | P20/INT4/UTX1           |
| 30      | P21/INT4/URX1           |
| 31      | P22/INT4/SO4/RD         |
| 32      | P23/INT4/SI4/WR         |
| 33      | P24/INT5/SCK4           |
| 34      | P25/INT5/UTX2           |
| 35      | P26/INT5/URX2           |
| 36      | P27/INT5/DPUP2          |
| 37      | D-                      |
| 38      | D+                      |
| 39      | V <sub>DD</sub> 3       |
| 40      | V <sub>SS</sub> 3       |
| 41      | P34/UFILT               |
| 42      | P33                     |
| 43      | P32/DBGP2               |
| 44      | P31/DBGP1               |
| 45      | P30/DBGP0               |
| 46      | P70/INT0/T0LCP/AN8/DPUP |
| 47      | P71/INT1/T0HCP/AN9      |
| 48      | P72/INT2/T0IN           |

## **System Block Diagram**



## **Pin Description**

| Pin Name           | I/O |                  |                                                                                     |                   | Description         |                  |          | Option |  |
|--------------------|-----|------------------|-------------------------------------------------------------------------------------|-------------------|---------------------|------------------|----------|--------|--|
| V <sub>SS</sub> 1, | -   | -power supply pi | n                                                                                   |                   |                     |                  |          | No     |  |
| V <sub>SS</sub> 2, |     |                  |                                                                                     |                   |                     |                  |          |        |  |
| V <sub>SS</sub> 3  |     |                  |                                                                                     |                   |                     |                  |          |        |  |
| V <sub>DD</sub> 1, | -   | +power supply p  | in                                                                                  |                   |                     |                  |          | No     |  |
| $V_{DD}^2$         |     |                  |                                                                                     |                   |                     |                  |          |        |  |
| V <sub>DD</sub> 3  | -   | USB reference v  | oltage pin                                                                          |                   |                     |                  |          | Yes    |  |
| Port 0             | I/O | • 8-bit I/O port |                                                                                     |                   |                     |                  |          | Yes    |  |
| P00 to P07         |     | I/O specifiable  | in 4-bit units                                                                      |                   |                     |                  |          |        |  |
|                    |     | Pull-up resistor | s can be turne                                                                      | d on and off in   | 4-bit units.        |                  |          |        |  |
|                    |     | HOLD reset inp   | out                                                                                 |                   |                     |                  |          |        |  |
|                    |     | Port 0 interrupt | input                                                                               |                   |                     |                  |          |        |  |
|                    |     | Pins functions   |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | AD converter in  | put port: AN0                                                                       | to AN7 (P00 to    | P07)                |                  |          |        |  |
|                    |     | P05: System C    | lock Output                                                                         |                   |                     |                  |          |        |  |
|                    |     | P06: Timer 6 to  | ggle outputs                                                                        |                   |                     |                  |          |        |  |
|                    |     | P07: Timer 7 to  | ggle outputs                                                                        |                   |                     |                  |          |        |  |
| Port 1             | I/O | • 8-bit I/O port |                                                                                     |                   |                     |                  |          | Yes    |  |
| P10 to P17         |     | I/O specifiable  | in 1-bit units                                                                      |                   |                     |                  |          |        |  |
|                    |     | Pull-up resistor | s can be turne                                                                      | d on and off in   | 1-bit units.        |                  |          |        |  |
|                    |     | • Pin functions  |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P10: SIO0 data   | output                                                                              |                   |                     |                  |          |        |  |
|                    |     | P11: SIO0 data   | input/bus I/O                                                                       |                   |                     |                  |          |        |  |
|                    |     | P12: SIO0 cloc   | k I/O                                                                               |                   |                     |                  |          |        |  |
|                    |     | P13: SIO1 data   | output                                                                              |                   |                     |                  |          |        |  |
|                    |     | P14: SIO1 data   | input/bus I/O                                                                       |                   |                     |                  |          |        |  |
|                    |     | P15: SIO1 cloc   | k I/O                                                                               |                   |                     |                  |          |        |  |
|                    |     | P16: Timer 1 P   | WML output                                                                          |                   |                     |                  |          |        |  |
|                    |     | P17: Timer 1 P   | WMH output/b                                                                        | eeper output      |                     |                  |          |        |  |
| Port 2             | I/O | • 8-bit I/O port |                                                                                     |                   |                     |                  |          | Yes    |  |
| P20 to P27         |     | I/O specifiable  | in 1-bit units                                                                      |                   |                     |                  |          |        |  |
|                    |     | Pull-up resistor | s can be turne                                                                      | d on and off in   | 1-bit units.        |                  |          |        |  |
|                    |     | • Pin functions  |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P20 to P23: IN   | T4 input/HOLD                                                                       | reset input/tim   | er 1 event input/   | timer 0L capture | e input/ |        |  |
|                    |     | tin              | ner 0H capture                                                                      | input             |                     |                  |          |        |  |
|                    |     | P24 to P27: IN   | P24 to P27: INT5 input/HOLD reset input/timer 1 event input/timer 0L capture input/ |                   |                     |                  |          |        |  |
|                    |     |                  | ner 0H capture                                                                      | input             |                     |                  |          |        |  |
|                    |     | P20: UART1 tra   | ansmit                                                                              |                   |                     |                  |          |        |  |
|                    |     | P21: UART1 re    |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P22: SIO4 date   |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P23: SIO4 date   |                                                                                     | iterface WR out   | put                 |                  |          |        |  |
|                    |     | P24: SIO4 cloc   |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P25: UART2 tra   |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P26: UART2 re    |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | P27: D+ 1.5kO    | pull-up resisto                                                                     | or connect pin    |                     |                  |          |        |  |
|                    |     |                  |                                                                                     |                   |                     |                  |          |        |  |
|                    |     | Interrupt ackno  | wledge type                                                                         |                   |                     |                  | 1        |        |  |
|                    |     |                  |                                                                                     | Falling           | Rising &            | H level          | L level  |        |  |
|                    |     |                  | wledge type<br>Rising                                                               | Falling           | Rising &<br>Falling | H level          | L level  |        |  |
|                    |     |                  |                                                                                     | Falling<br>enable | _                   | H level          | L level  |        |  |

Continued on next page.

Continued from preceding page.

| Pin Name   | I/O    |                                                          | Description                                        |                   |                     |                  |         |     |  |
|------------|--------|----------------------------------------------------------|----------------------------------------------------|-------------------|---------------------|------------------|---------|-----|--|
| Port 3     | I/O    | • 5-bit I/O port                                         |                                                    |                   |                     |                  |         | Yes |  |
| P30 to P34 |        | I/O specifiable                                          | e in 1-bit units                                   |                   |                     |                  |         |     |  |
|            |        | Pull-up resiste                                          | ors can be turne                                   | ed on and off in  | 1-bit units.        |                  |         |     |  |
|            |        | Pin functions                                            |                                                    |                   |                     |                  |         |     |  |
|            |        |                                                          |                                                    | pin (see Fig.5)   |                     |                  |         |     |  |
|            |        |                                                          | On-chip debugger pins: DBGP0 to DBGP2 (P30 to P32) |                   |                     |                  |         |     |  |
| Port 7     | I/O    | • 4-bit I/O port                                         | ·                                                  |                   |                     |                  |         |     |  |
| P70 to P73 |        | I/O specifiable     Pull up regist                       |                                                    | ad an and aff in  | 4 hit unita         |                  |         |     |  |
|            |        | Pull-up resists     Pin functions                        | ors can be turne                                   | ed on and off in  | 1-bit units.        |                  |         |     |  |
|            |        |                                                          | ut/HOLD roost                                      | innut/timer ()    | antura innut/wa     | tchdog timer out | tout/   |     |  |
|            |        | -                                                        | Ω pull-up resist                                   | -                 | apture iriput/wa    | teridog timer ou | iput/   |     |  |
|            |        |                                                          |                                                    | input/timer 0H o  | capture input       |                  |         |     |  |
|            |        | -                                                        |                                                    | -                 |                     | L capture input  | /       |     |  |
|            |        | -                                                        | ed clock count                                     | -                 | ,                   |                  |         |     |  |
|            |        |                                                          |                                                    | -                 | ent input/timer 0I  | H capture input/ |         |     |  |
|            |        | infrared                                                 | remote control                                     | receiver input    |                     |                  |         |     |  |
|            |        | AD converter                                             | input port: AN8                                    | 8(P70), AN9(P71   | 1)                  |                  |         |     |  |
|            |        | Interrupt ackr                                           | Interrupt acknowledge type                         |                   |                     |                  |         |     |  |
|            |        |                                                          | Rising                                             | Falling           | Rising &<br>Falling | H level          | L level |     |  |
|            |        | INT0                                                     | enable                                             | enable            | disable             | enable           | enable  |     |  |
|            |        | INT1                                                     | enable                                             | enable            | disable             | enable           | enable  |     |  |
|            |        | INT2                                                     | enable                                             | enable            | enable              | disable          | disable |     |  |
|            |        | INT3                                                     | enable                                             | enable            | enable              | disable          | disable |     |  |
|            |        |                                                          |                                                    |                   |                     |                  |         |     |  |
| PWM0       | I/O    | PWM0 and P                                               | WM1 output po                                      | ort               |                     |                  |         | No  |  |
| PWM1       |        | General-purp                                             | ose input port                                     |                   |                     |                  |         |     |  |
| D-         | I/O    | USB data I/O                                             | •                                                  |                   |                     |                  |         | No  |  |
|            |        | General-purp                                             |                                                    |                   |                     |                  |         |     |  |
| D+         | I/O    | USB data I/O                                             | •                                                  |                   |                     |                  |         | No  |  |
| RES        | 1      | General-purp                                             | ose I/O port                                       |                   |                     |                  |         | N.  |  |
|            | Input  | Reset pin                                                |                                                    |                   |                     |                  |         | No  |  |
| XT1        | Input  | • 32.768kHz cr                                           | ystal oscillator i                                 | input pin         |                     |                  |         | No  |  |
|            |        | Pin functions     Canaral purp                           | innut nort                                         |                   |                     |                  |         |     |  |
|            |        | General-purpose input port AD converter input port: AN10 |                                                    |                   |                     |                  |         |     |  |
|            |        |                                                          |                                                    | if not to be used | 4                   |                  |         |     |  |
| XT2        | I/O    | 32.768kHz crys                                           |                                                    |                   | J.                  |                  |         | No  |  |
| <u>-</u>   | ","    | • Pin functions                                          | ocomator ot                                        | aspat piil        |                     |                  |         | 140 |  |
|            |        | General-purp                                             | ose I/O port                                       |                   |                     |                  |         |     |  |
|            |        |                                                          | input port: AN1                                    | 1                 |                     |                  |         |     |  |
|            |        |                                                          |                                                    | d kept open if n  | ot to be used.      |                  |         |     |  |
| CF1        | Input  | Ceramic reson                                            | ator input pin                                     | •                 |                     |                  |         | No  |  |
| CF2        | Output | Ceramic reson                                            | ator output pin                                    |                   |                     |                  |         | No  |  |

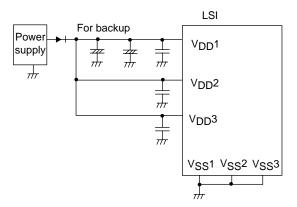
## **Port Output Types**

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

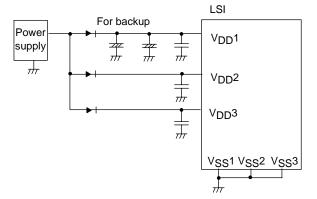
Data can be read into any input port even if it is in the output mode.

| Port Name                | Option Selected in Units of | Option Type | Output Type                                                                                     | Pull-up Resistor      |
|--------------------------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------|-----------------------|
| P00 to P07               | 1 bit                       | 1           | CMOS                                                                                            | Programmable (Note 1) |
|                          |                             | 2           | Nch-open drain                                                                                  | No                    |
| P10 to P17               | 1 bit                       | 1           | CMOS                                                                                            | Programmable          |
| P20 to P27<br>P30 to P34 |                             | 2           | Nch-open drain                                                                                  | Programmable          |
| P70                      | -                           | No          | Nch-open drain                                                                                  | Programmable          |
| P71 to P73               | -                           | No          | CMOS                                                                                            | Programmable          |
| PWM0, PWM1               | -                           | No          | CMOS                                                                                            | No                    |
| D+, D-                   | -                           | No          | CMOS                                                                                            | No                    |
| XT1                      | -                           | No          | Input only                                                                                      | No                    |
| XT2                      | -                           | No          | 32.768kHz crystal oscillator output (N channel open drain when in general- purpose output mode) | No                    |

Note 1: Programmable pull-up resistors for port 0 are controlled in 4-bit units (P00 to 03, P04 to 07).


## **User Option Table**

| Option Name      | Option to be Applied on | Flash-ROM<br>Version | Option Selected in Units of | Option Selection |
|------------------|-------------------------|----------------------|-----------------------------|------------------|
|                  | D00 to D07              | 0                    | A 1-14                      | CMOS             |
|                  | P00 to P07              | 0                    | 1 bit                       | Nch-open drain   |
|                  | P10 to P17              | 0                    | 1 bit                       | CMOS             |
| Dort output turo | P10 t0 P17              | 0                    | 1 DIL                       | Nch-open drain   |
| Port output type | D20 to D27              | 0                    | 1 hit                       | CMOS             |
|                  | P20 to P27              | O                    | 1 bit                       | Nch-open drain   |
|                  | P30 to P34              | 0                    | 1 bit                       | CMOS             |
|                  |                         |                      |                             | Nch-open drain   |
| Program start    |                         | 0                    |                             | 00000h           |
| address          | -                       | O                    | -                           | 0FE00h           |
|                  | USB Regulator           | 0                    | _                           | USE              |
|                  |                         | 0                    | -                           | NONUSE           |
| LICD Dogulator   | USB Regulator           | 0                    | _                           | USE              |
| USB Regulator    | (at HOLD mode)          | 0                    | -                           | NONUSE           |
|                  | USB Regulator           | 0                    |                             | USE              |
|                  | (at HALT mode)          | O                    | -                           | NONUSE           |


### **Power Pin Treatment**

Connect the IC as shown below to minimize the noise input to the  $V_{DD1}$  pin. Be sure to electrically short the  $V_{SS1}$ ,  $V_{SS2}$ , and  $V_{SS3}$  pins.

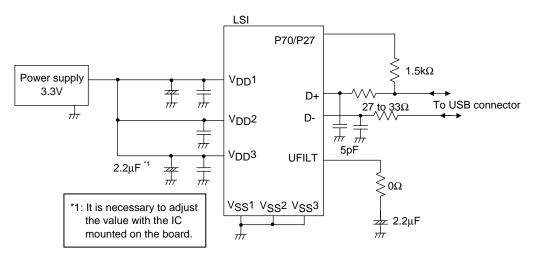
Example 1: When the microcontroller is in the backup state in the HOLD mode, the power to sustain the high level of output ports is supplied by their backup capacitors.



Example 2: The high level output at ports is not sustained and unstable in the HOLD backup mode.

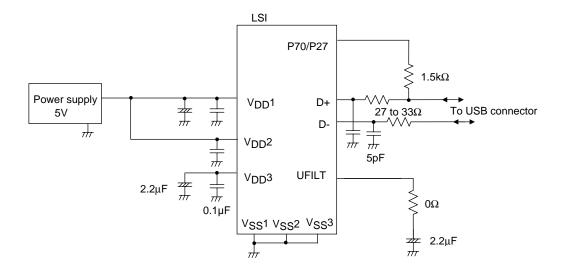


### **USB Reference Power Option**


When a voltage 4.5 to 5.5V is supplied to V<sub>DD</sub>1 and the internal USB reference voltage circuit is activated, the reference voltage for USB port output is generated. The active/inactive state of reference voltage circuit can be switched by the option select. The procedure for marking the option selection is described below.

|                           |                            | (1)    | (2)      | (3)      | (4)      |
|---------------------------|----------------------------|--------|----------|----------|----------|
| Option select             | USB Regulator              | USE    | USE      | USE      | NONUSE   |
|                           | USB Regulator at HOLD mode | USE    | NONUSE   | NONUSE   | NONUSE   |
|                           | USB Regulator at HALT mode | USE    | NONUSE   | USE      | NONUSE   |
| Reference voltage circuit | Normal state               | active | active   | active   | inactive |
| state                     | HOLD mode                  | active | inactive | inactive | inactive |
|                           | HALT mode                  | active | inactive | active   | inactive |

- When the USB reference voltage circuit is made inactive, the level of the reference voltage for USB port output is equal to V<sub>DD</sub>1.
- Selection (2) or (3) can be used to set the reference voltage circuit inactive in HOLD or HALT mode.
- When the reference voltage circuit is activated, the current drain increase by approximately 100µA compared with when the reference voltage circuit is inactive.


Example 1:  $V_{DD}1=V_{DD}2=3.3V$ 

- Inactivating the reference voltage circuit (selection (4)).
- Connecting V<sub>DD</sub>3 to V<sub>DD</sub>1 and V<sub>DD</sub>2.



Example 2: VDD1=VDD2=5.0V

- Activating the reference voltage circuit (selection (1)).
- Isolating V<sub>DD</sub>3 from V<sub>DD</sub>1 and V<sub>DD</sub>2, and connecting capacitor between V<sub>DD</sub>3 and V<sub>SS</sub>.



## Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

| ĺ                                 |                        |                                                         | 7 88 88                                                       | 55                  |             |     |                      |      |
|-----------------------------------|------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------|-------------|-----|----------------------|------|
| Parameter                         | Parameter Symbol       |                                                         | Conditions                                                    | V D.0               |             |     | fication             |      |
| Maximum supp                      | ly V <sub>DD</sub> max | V <sub>DD</sub> 1, V <sub>DD</sub> 2, V <sub>DD</sub> 3 | V <sub>DD</sub> 1=V <sub>DD</sub> 2=V <sub>DD</sub> 3         | V <sub>DD</sub> [V] | min<br>-0.3 | typ | max<br>+6.5          | unit |
| voltage                           |                        |                                                         |                                                               |                     | -0.3        |     | +0.5                 |      |
| Input voltage                     | V <sub>I</sub> (1)     | XT1, CF1                                                |                                                               |                     | -0.3        |     | V <sub>DD</sub> +0.3 | V    |
| Input/output<br>voltage           | V <sub>IO</sub> (1)    | Ports 0, 1, 2, 3, 7<br>PWM0, PWM1, XT2                  |                                                               |                     | -0.3        |     | V <sub>DD</sub> +0.3 |      |
| Peak outpu<br>current             | ut IOPH(1)             | Ports 0, 1, 2                                           | When CMOS output type is selected Per 1 applicable pin        |                     | -10         |     |                      |      |
|                                   | IOPH(2)                | PWM0, PWM1                                              | Per 1 applicable pin                                          |                     | -20         |     |                      |      |
|                                   | IOPH(3)                | Port 3<br>P71 to P73                                    | When CMOS output<br>type is selected     Per 1 applicable pin |                     | -5          |     |                      |      |
| Average output current            | IOMH(1)                | Ports 0, 1, 2                                           | When CMOS output<br>type is selected Per 1 applicable pin     |                     | -7.5        |     |                      |      |
| मू (Note 1-1)                     | IOMH(2)                | PWM0, PWM1                                              | Per 1 applicable pin                                          |                     | -15         |     |                      |      |
| output current (Note 1-1)         | IOMH(3)                | Port 3<br>P71 to P73                                    | When CMOS output<br>type is selected     Per 1 applicable pin |                     | -3          |     |                      |      |
| Total outpu                       | ıt ΣΙΟΑΗ(1)            | Ports 0, 2                                              | Total of all applicable pins                                  |                     | -25         |     |                      |      |
| current                           | ΣΙΟΑΗ(2)               | Port 1<br>PWM0, PWM1                                    | Total of all applicable pins                                  |                     | -25         |     |                      |      |
|                                   | ΣΙΟΑΗ(3)               | Ports 0, 1, 2<br>PWM0, PWM1                             | Total of all applicable pins                                  |                     | -45         |     |                      |      |
|                                   | ΣΙΟΑΗ(4)               | Port 3<br>P71 to P73                                    | Total of all applicable pins                                  |                     | -10         |     |                      | mA   |
|                                   | ΣΙΟΑΗ(5)               | D+, D-                                                  | Total of all applicable pins                                  |                     | -25         |     |                      |      |
| Peak outpu<br>current             | ıt IOPL(1)             | P02 to P07<br>Ports 1, 2<br>PWM0, PWM1                  | Per 1 applicable pin                                          |                     |             |     | 20                   |      |
|                                   | IOPL(2)                | P00, P01                                                | Per 1 applicable pin                                          |                     |             |     | 30                   |      |
|                                   | IOPL(3)                | Ports 3, 7, XT2                                         | Per 1 applicable pin                                          |                     |             |     | 10                   |      |
| Average output current (Note 1-1) | IOML(1)                | P02 to P07<br>Ports 1, 2<br>PWM0, PWM1                  | Per 1 applicable pin                                          |                     |             |     | 15                   |      |
| र् <u>व</u> (Note 1-1)            | IOML(2)                | P00, P01                                                | Per 1 applicable pin                                          |                     |             |     | 20                   |      |
| vel                               | IOML(3)                | Ports 3, 7, XT2                                         | Per 1 applicable pin                                          |                     |             |     | 7.5                  |      |
| Total outpu                       | ıt ΣΙΟΑL(1)            | Ports 0, 2                                              | Total of all applicable pins                                  |                     |             |     | 45                   |      |
| 으 current                         | ΣIOAL(2)               | Port 1<br>PWM0, PWM1                                    | Total of all applicable pins                                  |                     |             |     | 45                   |      |
|                                   | ΣIOAL(3)               | Ports 0, 1, 2<br>PWM0, PWM1                             | Total of all applicable pins                                  |                     |             |     | 80                   |      |
|                                   | ΣIOAL(4)               | Ports 3, 7, XT2                                         | Total of all applicable pins                                  |                     |             |     | 15                   |      |
|                                   | ΣIOAL(5)               | D+, D-                                                  | Total of all applicable pins                                  |                     |             |     | 25                   |      |
| Allowable powe                    | Pd max                 | TQFP48J(7×7)                                            | Ta=-30 to +70°C                                               |                     |             |     | 190                  | mW   |
| Operating ambi                    | ent Topr               |                                                         |                                                               |                     | -30         |     | +70                  | 0.7  |
| Storage ambier temperature        | nt Tstg                |                                                         |                                                               |                     | -55         |     | +125                 | °C   |

Note 1-1: The mean output current is a mean value measured over 100ms.

## Allowable Operating Conditions at $Ta = -30^{\circ}C$ to $+70^{\circ}C$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

|                                        |                     | , <u> </u>                                                            |                                                                                                  | ~~~                 |                            |          |                             |       |
|----------------------------------------|---------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|----------------------------|----------|-----------------------------|-------|
| Parameter                              | Symbol              | Pin/Remarks                                                           | Conditions                                                                                       |                     |                            | Specific | ation                       |       |
| i arameter                             | Gymbol              | 1 III/IVerilaiks                                                      | Conditions                                                                                       | V <sub>DD</sub> [V] | min                        | typ      | max                         | unit  |
| Operating                              | V <sub>DD</sub> (1) | $V_{DD}1=V_{DD}2=V_{DD}3$                                             | 0.183μs≤tCYC≤200μs                                                                               |                     | 3.0                        |          | 5.5                         |       |
| supply voltage (Note 2-1)              |                     |                                                                       | 0.183μs≤tCYC≤0.383μs<br>USB circuit active                                                       |                     | 3.0                        |          | 5.5                         |       |
|                                        |                     |                                                                       | 0.367μs≤tCYC≤200μs Except for onboard programming                                                |                     | 2.7                        |          | 5.5                         |       |
| Memory<br>sustaining<br>supply voltage | VHD                 | V <sub>DD</sub> 1=V <sub>DD</sub> 2=V <sub>DD</sub> 3                 | RAM and register contents sustained in HOLD mode.                                                |                     | 2.0                        |          | 5.5                         |       |
| High level input voltage               | V <sub>IH</sub> (1) | Ports 0, 1, 2, 3 P71 to P73 P70 port input/ interrupt side PWM0, PWM1 |                                                                                                  | 2.7 to 5.5          | 0.3V <sub>DD</sub><br>+0.7 |          | $V_{DD}$                    |       |
|                                        | V <sub>IH</sub> (2) | Port 70 watchdog timer side                                           |                                                                                                  | 2.7 to 5.5          | 0.9V <sub>DD</sub>         |          | V <sub>DD</sub>             | V     |
|                                        | V <sub>IH</sub> (3) | XT1, XT2, CF1, RES                                                    |                                                                                                  | 2.7 to 5.5          | 0.75V <sub>DD</sub>        |          | $V_{DD}$                    |       |
| Low level input voltage                | V <sub>IL</sub> (1) | Ports 1, 2,3<br>P71 to P73                                            |                                                                                                  | 4.0 to 5.5          | V <sub>SS</sub>            |          | 0.1V <sub>DD</sub><br>+0.4  |       |
|                                        | V <sub>IL</sub> (2) | P70 port input/<br>interrupt side                                     |                                                                                                  | 2.7 to 4.0          | V <sub>SS</sub>            |          | 0.2V <sub>DD</sub>          |       |
|                                        | V <sub>IL</sub> (3) | Port 0<br>PWM0, PWM1                                                  |                                                                                                  | 4.0 to 5.5          | V <sub>SS</sub>            |          | 0.15V <sub>DD</sub><br>+0.4 |       |
|                                        | V <sub>IL</sub> (4) |                                                                       |                                                                                                  | 2.7 to 4.0          | V <sub>SS</sub>            |          | 0.2V <sub>DD</sub>          |       |
|                                        | V <sub>IL</sub> (5) | Port 70 watchdog timer side                                           |                                                                                                  | 2.7 to 5.5          | V <sub>SS</sub>            |          | 0.8V <sub>DD</sub><br>-1.0  |       |
|                                        | V <sub>IL</sub> (6) | XT1, XT2, CF1, RES                                                    |                                                                                                  | 2.7 to 5.5          | V <sub>SS</sub>            |          | 0.25V <sub>DD</sub>         |       |
| Instruction                            | tCYC                |                                                                       |                                                                                                  | 3.0 to 5.5          | 0.183                      |          | 200                         |       |
| cycle time                             |                     |                                                                       | USB circuit active                                                                               | 3.0 to 5.5          | 0.183                      |          | 0.383                       | μs    |
| (Note 2-2)                             |                     |                                                                       | Except for onboard programming                                                                   | 2.7 to 5.5          | 0.367                      |          | 200                         | μο    |
| External<br>system clock<br>frequency  | FEXCF(1)            | CF1                                                                   | CF2 pin open     System clock frequency division ratio=1/1     External system clock duty =50±5% | 3.0 to 5.5          | 0.1                        |          | 16                          |       |
|                                        |                     |                                                                       | CF2 pin open     System clock frequency division ratio=1/1     External system clock duty =50±5% | 2.7 to 5.5          | 0.1                        |          | 8                           | - MHz |
| Oscillation frequency                  | FmCF(1)             | CF1, CF2                                                              | 16MHz ceramic oscillation<br>See Fig. 1.                                                         | 3.0 to 5.5          |                            | 16       |                             |       |
| range<br>(Note 2-3)                    | FmCF(2)             | CF1, CF2                                                              | 8MHz ceramic oscillation<br>See Fig. 1.                                                          | 2.7 to 5.5          |                            | 8        |                             | MHz   |
|                                        | FmRC                |                                                                       | Internal RC oscillation                                                                          | 2.7 to 5.5          | 0.3                        | 1.0      | 2.0                         |       |
|                                        | FmSLRC              |                                                                       | Internal low-speed RC oscillation                                                                | 2.7 to 5.5          | 15                         | 30       | 60                          |       |
|                                        | FsX'tal             | XT1, XT2                                                              | 32.768kHz crystal oscillation<br>See Fig. 2.                                                     | 2.7 to 5.5          |                            | 32.768   |                             | kHz   |

Note 2-1: V<sub>DD</sub> must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

## **Electrical Characteristics** at $Ta = -30^{\circ}C$ to $+70^{\circ}C$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

| Parameter                | Symbol              | Pin/Remarks                                   | Conditions                                                                                |                     |                      | Specifica          | ation |      |
|--------------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------|-------|------|
| Farameter                | Symbol              | FIII/Remarks                                  | Conditions                                                                                | V <sub>DD</sub> [V] | min                  | typ                | max   | unit |
| High level input current | I <sub>IH</sub> (1) | Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 D+, D- | Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)  | 2.7 to 5.5          |                      |                    | 1     |      |
|                          | I <sub>IH</sub> (2) | XT1, XT2                                      | For input port specification VIN=VDD                                                      | 2.7 to 5.5          |                      |                    | 1     |      |
|                          | I <sub>IH</sub> (3) | CF1                                           | V <sub>IN</sub> =V <sub>DD</sub>                                                          | 2.7 to 5.5          |                      |                    | 15    |      |
| Low level input current  | IIL(1)              | Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 D+, D- | Output disabled Pull-up resistor off  VIN=VSS (Including output Tr's off leakage current) | 2.7 to 5.5          | -1                   |                    |       | μΑ   |
|                          | I <sub>IL</sub> (2) | XT1, XT2                                      | For input port specification VIN=VSS                                                      | 2.7 to 5.5          | -1                   |                    |       |      |
|                          | I <sub>IL</sub> (3) | CF1                                           | V <sub>IN</sub> =V <sub>SS</sub>                                                          | 2.7 to 5.5          | -15                  |                    |       |      |
| High level output        | V <sub>OH</sub> (1) | Ports 0, 1, 2, 3                              | I <sub>OH</sub> =-1mA                                                                     | 4.5 to 5.5          | V <sub>DD</sub> -1   |                    |       |      |
| voltage                  | V <sub>OH</sub> (2) | P71 to P73                                    | I <sub>OH</sub> =-0.4mA                                                                   | 3.0 to 5.5          | V <sub>DD</sub> -0.4 |                    |       |      |
|                          | V <sub>OH</sub> (3) |                                               | I <sub>OH</sub> =-0.2mA                                                                   | 2.7 to 5.5          | V <sub>DD</sub> -0.4 |                    |       |      |
|                          | V <sub>OH</sub> (4) | PWM0, PWM1                                    | I <sub>OH</sub> =-10mA                                                                    | 4.5 to 5.5          | V <sub>DD</sub> -1.5 |                    |       |      |
|                          | V <sub>OH</sub> (5) | P05 (CK0 when                                 | I <sub>OH</sub> =-1.6mA                                                                   | 3.0 to 5.5          | V <sub>DD</sub> -0.4 |                    |       |      |
|                          | V <sub>OH</sub> (6) | using system clock output function)           | I <sub>OH</sub> =-1mA                                                                     | 2.7 to 5.5          | V <sub>DD</sub> -0.4 |                    |       |      |
| Low level output         | V <sub>OL</sub> (1) | P00, P01                                      | I <sub>OL</sub> =30mA                                                                     | 4.5 to 5.5          |                      |                    | 1.5   | V    |
| voltage                  | V <sub>OL</sub> (2) |                                               | I <sub>OL</sub> =5mA                                                                      | 3.0 to 5.5          |                      |                    | 0.4   |      |
|                          | V <sub>OL</sub> (3) |                                               | I <sub>OL</sub> =2.5mA                                                                    | 2.7 to 5.5          |                      |                    | 0.4   |      |
|                          | V <sub>OL</sub> (4) | Ports 0, 1, 2                                 | I <sub>OL</sub> =10mA                                                                     | 4.5 to 5.5          |                      |                    | 1.5   |      |
|                          | V <sub>OL</sub> (5) | PWM0, PWM1                                    | I <sub>OL</sub> =1.6mA                                                                    | 3.0 to 5.5          |                      |                    | 0.4   |      |
|                          | V <sub>OL</sub> (6) | XT2                                           | I <sub>OL</sub> =1mA                                                                      | 2.7 to 5.5          |                      |                    | 0.4   |      |
|                          | V <sub>OL</sub> (7) | Ports 3, 7                                    | I <sub>OL</sub> =1.6mA                                                                    | 3.0 to 5.5          |                      |                    | 0.4   |      |
|                          | V <sub>OL</sub> (8) |                                               | I <sub>OL</sub> =1mA                                                                      | 2.7 to 5.5          |                      |                    | 0.4   |      |
| Pull-up resistance       | Rpu(1)              | Ports 0, 1, 2, 3                              | V <sub>OH</sub> =0.9V <sub>DD</sub>                                                       | 4.5 to 5.5          | 15                   | 35                 | 80    | l-O  |
|                          | Rpu(2)              | Port 7                                        |                                                                                           | 2.7 to 5.5          | 18                   | 50                 | 150   | kΩ   |
| Hysteresis voltage       | VHYS                | RES<br>Ports 1, 2, 3, 7                       |                                                                                           | 2.7 to 5.5          |                      | 0.1V <sub>DD</sub> |       | V    |
| Pin capacitance          | СР                  | All pins                                      | For pins other than that under test:  VIN=VSS f=1MHz Ta=25°C                              | 2.7 to 5.5          |                      | 10                 |       | pF   |

## Serial I/O Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

## 1. SIO0 Serial I/O Characteristics (Note 4-1-1)

|              | -            | Parameter                               | Symbol     | Pin/Remarks | Conditions                                                                                                                                |                     |                    | Specif | fication                    |      |
|--------------|--------------|-----------------------------------------|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|--------|-----------------------------|------|
|              | F            | rarameter                               | Symbol     | Pin/Remarks | Conditions                                                                                                                                | V <sub>DD</sub> [V] | min                | typ    | max                         | unit |
|              |              | Frequency                               | tSCK(1)    | SCK0(P12)   | See Fig.8.                                                                                                                                |                     | 2                  |        |                             |      |
|              |              | Low level pulse width                   | tSCKL(1)   |             |                                                                                                                                           |                     | 1                  |        |                             |      |
|              |              | High level pulse width                  | tSCKH(1)   |             |                                                                                                                                           |                     | 1                  |        |                             |      |
|              | ock          |                                         | tSCKHA(1a) |             | Continuous data transmission/ reception mode  USB nor SIO4 are not in use simultaneous.  See Fig.8.  (Note 4-1-2)                         |                     | 4                  |        |                             |      |
|              | Input clock  |                                         | tSCKHA(1b) |             | Continuous data transmission/reception mode  USB is in use simultaneous.  SIO4 is not in use simultaneous.  See Fig.8.  (Note 4-1-2)      | 2.7 to 5.5          | 7                  |        |                             | tCYC |
| Serial clock |              |                                         | tSCKHA(1c) |             | Continuous data transmission/ reception mode USB and SIO4 are in use simultaneous. See Fig.8. (Note 4-1-2)                                |                     | 9                  |        |                             |      |
| Serial       |              | Frequency                               | tSCK(2)    | SCK0(P12)   | CMOS output selected     See Fig.8.                                                                                                       |                     | 4/3                |        |                             |      |
|              |              | Low level pulse width                   | tSCKL(2)   |             | <b>3</b> ·                                                                                                                                |                     |                    | 1/2    |                             |      |
|              |              | High level pulse width                  | tSCKH(2)   |             |                                                                                                                                           |                     |                    | 1/2    |                             | tSCK |
|              | ock          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | tSCKHA(2a) |             | Continuous data transmission/ reception mode  USB nor SIO4 are not in use simultaneous.  CMOS output selected  See Fig.8.                 |                     | tSCKH(2)<br>+2tCYC |        | tSCKH(2)<br>+(10/3)<br>tCYC |      |
|              | Output clock |                                         | tSCKHA(2b) |             | Continuous data transmission/ reception mode USB is in use simultaneous. SIO4 is not in use simultaneous. CMOS output selected See Fig.8. | 2.7 to 5.5          | tSCKH(2)<br>+2tCYC |        | tSCKH(2)<br>+(19/3)<br>tCYC | tCYC |
|              |              |                                         | tSCKHA(2c) |             | Continuous data transmission/ reception mode USB and SIO4 are in use simultaneous. CMOS output selected See Fig.8.                        |                     | tSCKH(2)<br>+2tCYC |        | tSCKH(2)<br>+(25/3)<br>tCYC |      |

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SI0RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Continued on next page.

Continued from preceding page.

|              |              | Parameter         | Symbol  | Pin/Remarks           | Conditions                                                              |             |      | Spec | ification          |      |
|--------------|--------------|-------------------|---------|-----------------------|-------------------------------------------------------------------------|-------------|------|------|--------------------|------|
|              |              | rarameter         | Symbol  | FIII/Remarks          | Conditions                                                              | $V_{DD}[V]$ | min  | typ  | max                | unit |
| Serial input | Da           | ta setup time     | tsDI(1) | SB0(P11),<br>SI0(P11) | Must be specified with respect to rising edge of SIOCLK.     See Fig.8. | 2.7 to 5.5  | 0.03 |      |                    |      |
| Serial       | Da           | ta hold time      | thDI(1) |                       |                                                                         | 2.7 to 5.5  | 0.03 |      |                    |      |
|              | Input clock  | Output delay time | tdD0(1) | SO0(P10),<br>SB0(P11) | Continuous data transmission/reception mode     (Note 4-1-3)            | 2.7 to 5.5  |      |      | (1/3)tCYC<br>+0.05 | μs   |
| al output    | Input        |                   | tdD0(2) |                       | Synchronous 8-bit mode     (Note 4-1-3)                                 | 2.7 to 5.5  |      |      | 1tCYC<br>+0.05     |      |
| Serial       | Output clock |                   | tdD0(3) |                       | (Note 4-1-3)                                                            | 2.7 to 5.5  |      |      | (1/3)tCYC<br>+0.05 |      |

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.8.

## 2. SIO1 Serial I/O Characteristics (Note 4-2-1)

|               | -            | Parameter              | Symbol   | Pin/Remarks           | Conditions                                                                                                                                                                    |                     |      | Speci | fication           |       |
|---------------|--------------|------------------------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|--------------------|-------|
|               | r            | Parameter              | Symbol   | Pin/Remarks           | Conditions                                                                                                                                                                    | V <sub>DD</sub> [V] | min  | typ   | max                | unit  |
|               | ×            | Frequency              | tSCK(3)  | SCK1(P15)             | See Fig.8.                                                                                                                                                                    |                     | 2    |       |                    |       |
|               | Input clock  | Low level pulse width  | tSCKL(3) |                       |                                                                                                                                                                               | 2.7 to 5.5          | 1    |       |                    | .0.40 |
| clock         | u            | High level pulse width | tSCKH(3) |                       |                                                                                                                                                                               |                     | 1    |       |                    | tCYC  |
| Serial clock  | ×            | Frequency              | tSCK(4)  | SCK1(P15)             | CMOS output selected     See Fig.8.                                                                                                                                           |                     | 2    |       |                    |       |
|               | Output clock | Low level pulse width  | tSCKL(4) |                       |                                                                                                                                                                               | 2.7 to 5.5          |      | 1/2   |                    |       |
|               | nO           | High level pulse width | tSCKH(4) |                       |                                                                                                                                                                               |                     |      | 1/2   |                    | tSCK  |
| input         | Da           | ta setup time          | tsDI(2)  | SB1(P14),<br>SI1(P14) | Must be specified with<br>respect to rising edge of<br>SIOCLK.                                                                                                                | 2.7 to 5.5          | 0.03 |       |                    |       |
| Serial input  | Da           | ta hold time           | thDI(2)  |                       | • See Fig.8.                                                                                                                                                                  | 2.7 to 5.5          | 0.03 |       |                    |       |
| Serial output | Ou           | tput delay time        | tdD0(4)  | SO1(P13),<br>SB1(P14) | Must be specified with respect to falling edge of SIOCLK.     Must be specified as the time to the beginning of output state change in open drain output mode.     See Fig.8. | 2.7 to 5.5          |      |       | (1/3)tCYC<br>+0.05 | μs    |

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

## 3. SIO4 Serial I/O Characteristics (Note 4-3-1)

|               | Parameter              | Symbol          | Pin/      | Conditions                                                       | T                   |          | Spec | ification | ī    |
|---------------|------------------------|-----------------|-----------|------------------------------------------------------------------|---------------------|----------|------|-----------|------|
| 1             |                        | 1               | Remarks   |                                                                  | V <sub>DD</sub> [V] | min      | typ  | max       | unit |
|               | Frequency              | tSCK(5)         | SCK4(P24) | See Fig.8.                                                       |                     | 2        |      |           |      |
|               | Low level              | tSCKL(5)        |           |                                                                  |                     | 1        |      |           |      |
|               | pulse width High level | tSCKH(5)        | -         |                                                                  |                     | 1        |      | +         |      |
|               | pulse width            | tSCKHA(5a)      | -         | USB nor continuous data                                          | -                   | ı        |      | +         |      |
|               | paice main             | ISCKHA(5a)      |           | transmission/reception mode                                      |                     |          |      |           |      |
|               |                        |                 |           | Of SIO0 are not in use                                           |                     |          |      |           |      |
|               |                        |                 |           | simultaneous.                                                    |                     | 4        |      |           |      |
|               |                        |                 |           | • See Fig.8.                                                     |                     |          |      |           |      |
| 쓩             |                        |                 |           | • (Note 4-3-2)                                                   |                     |          |      |           |      |
| Input clock   |                        | tSCKHA(5b)      |           | USB is in use simultaneous.                                      | 2.7 to 5.5          |          |      |           | tCYC |
| 립             |                        |                 |           | Continuous data transmission/     reception mode of SIO0 is not. |                     |          |      |           | icic |
|               |                        |                 |           | reception mode of SIO0 is not in use simultaneous.               |                     | 7        |      |           |      |
|               |                        |                 |           | • See Fig.8.                                                     |                     |          |      |           |      |
|               |                        |                 |           | • (Note 4-3-2)                                                   |                     |          |      |           |      |
|               |                        | tSCKHA(5c)      |           | USB and continuous data                                          |                     |          |      |           |      |
|               |                        |                 |           | transmission/ reception                                          |                     |          |      |           |      |
|               |                        |                 |           | mode of SIO0 are in use                                          |                     | 10       |      |           |      |
|               |                        |                 |           | simultaneous.  • See Fig.8.                                      |                     |          |      |           |      |
| 5             |                        |                 |           | • See Fig.o.<br>• (Note 4-3-2)                                   |                     |          |      |           |      |
| - deliai 000  | Frequency              | tSCK(6)         | SCK4(P24) | CMOS output selected                                             |                     | 4/3      |      |           |      |
| 200           | Low level              | tSCKL(6)        |           | • See Fig.8.                                                     |                     |          |      | 1         |      |
|               | pulse width            |                 |           |                                                                  |                     |          | 1/2  |           | tSCK |
|               | High level             | tSCKH(6)        |           |                                                                  |                     |          | 1/2  |           | ISCK |
|               | pulse width            | 1001(114(0.)    |           | LIOD                                                             |                     |          |      |           |      |
|               |                        | tSCKHA(6a)      |           | USB nor continuous data<br>transmission/reception mode           |                     |          |      |           |      |
|               |                        |                 |           | of SIO0 are not in use                                           |                     | tSCKH(6) |      | tSCKH(6)  |      |
|               |                        |                 |           | simultaneous.                                                    |                     | +(5/3)   |      | +(10/3)   |      |
| ×             |                        |                 |           | CMOS output selected                                             |                     | tCYC     |      | tCYC      |      |
| Output clock  |                        |                 | -         | • See Fig.8.                                                     | 074.55              |          |      |           |      |
| Indir         |                        | tSCKHA(6b)      |           | USB is in use simultaneous.                                      | 2.7 to 5.5          |          |      |           |      |
| ő             |                        |                 |           | Continuous data transmission/<br>reception mode of SIO0 is not   |                     | tSCKH(6) |      | tSCKH(6)  |      |
|               |                        |                 |           | in use simultaneous.                                             |                     | +(5/3)   |      | +(19/3)   | tCYC |
|               |                        |                 |           | CMOS output selected                                             |                     | tCYC     |      | tCYC      |      |
|               |                        |                 |           | • See Fig.8.                                                     |                     |          |      |           |      |
|               |                        | tSCKHA(6c)      |           | USB and continuous data                                          |                     |          |      |           |      |
|               |                        |                 |           | transmission/reception                                           |                     | tSCKH(6) |      | tSCKH(6)  |      |
|               |                        |                 |           | mode of SIO0 are in use simultaneous.                            |                     | +(5/3)   |      | +(28/3)   |      |
|               |                        |                 |           | CMOS output selected                                             |                     | tCYC     |      | tCYC      |      |
|               |                        |                 |           | • See Fig.8.                                                     |                     |          |      |           |      |
| Da            | ata setup time         | tsDI(3)         | SO4(P22), | Must be specified with respect                                   |                     |          |      |           |      |
| ĭ             |                        |                 | SI4(P23)  | to rising edge of SIOCLK.                                        | 2.7 to 5.5          | 0.03     |      |           |      |
| Da            |                        | # <b>D</b> 1(0) | -         | • See Fig.8.                                                     |                     |          |      |           | μs   |
| Da            | ata hold time          | thDI(3)         |           |                                                                  | 2.7 to 5.5          | 0.03     |      |           |      |
|               |                        |                 |           |                                                                  | 2.7 to 5.5          | 0.03     |      |           |      |
| 0             | utput delay time       | tdD0(5)         | SO4(P22), | Must be specified with respect                                   |                     |          |      |           |      |
| ۱             |                        |                 | SI4(P23)  | to rising edge of SIOCLK.                                        |                     |          |      |           |      |
| <del> </del>  |                        |                 |           | Must be specified as the time                                    |                     |          |      | (1/3)tCYC |      |
| Serial Output |                        |                 |           | to the beginning of output                                       | 2.7 to 5.5          |          |      | +0.05     | μs   |
| b             |                        |                 |           | state change in open drain output mode.                          |                     |          |      |           |      |
| 1             |                        |                 |           |                                                                  | •                   |          | i    |           |      |

Note 4-3-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-3-2: To use serial-clock-input in continuous trans/rec mode, a time from SI4RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

## Pulse Input Conditions at Ta = -30°C to +70°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

| Parameter                  | Symbol             | Pin/Remarks                                                                     | Conditions                                                                                        |                     |     | Specif | ication |                    |
|----------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|-----|--------|---------|--------------------|
| Parameter                  | Symbol             | Pin/Remarks                                                                     | Conditions                                                                                        | V <sub>DD</sub> [V] | min | typ    | max     | unit               |
| High/low level pulse width | tP1H(1)<br>tP1L(1) | INT0(P70),<br>INT1(P71),<br>INT2(P72),<br>INT4(P20 to P23),<br>INT5(P24 to P27) | Interrupt source flag can be set.     Event inputs for timer 0 or 1 are enabled.                  | 2.7 to 5.5          | 1   |        |         |                    |
|                            | tPIH(2)<br>tPIL(2) | INT3(P73) when noise filter time constant is 1/1                                | <ul><li>Interrupt source flag can be set.</li><li>Event inputs for timer 0 are enabled.</li></ul> | 2.7 to 5.5          | 2   |        |         | tCYC               |
|                            | tPIH(3)<br>tPIL(3) | INT3(P73) when<br>noise filter time<br>constant is 1/32                         | Interrupt source flag can be set.     Event inputs for timer 0 are enabled.                       | 2.7 to 5.5          | 64  |        |         |                    |
|                            | tPIH(4)<br>tPIL(4) | INT3(P73) when noise filter time constant is 1/128                              | <ul><li>Interrupt source flag can be set.</li><li>Event inputs for timer 0 are enabled.</li></ul> | 2.7 to 5.5          | 256 |        |         |                    |
|                            | tPIL(5)            | RMIN(P73)                                                                       | Recognized by the infrared remote control receiver circuit as a signal                            | 2.7 to 5.5          | 4   |        |         | RMCK<br>(Note 5-1) |
|                            | tPIL(6)            | RES                                                                             | Resetting is enabled.                                                                             | 2.7 to 5.5          | 200 |        |         | μs                 |

Note 5-1: Represents the period of the reference clock (1 tCYC to 128 tCYC or the source frequency of the subclock) for the infrared remote control receiver circuit.

## AD Converter Characteristics at Ta= -30°C to +70°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

#### <12-bits AD Converter Mode>

| Parameter                  | Symbol | Pin/Remarks          |            | Conditions                |                     |                 | Specifi | cation          |      |
|----------------------------|--------|----------------------|------------|---------------------------|---------------------|-----------------|---------|-----------------|------|
| Parameter                  | Symbol | Pin/Remarks          | Conditions |                           | V <sub>DD</sub> [V] | min             | typ     | max             | unit |
| Resolution                 | N      | AN0(P00) to          |            |                           | 3.0 to 5.5          |                 | 12      |                 | bit  |
| Absolute accuracy          | ET     | AN7(P07)             | (Note 6    | -1)                       | 3.0 to 5.5          |                 |         | ±16             | LSB  |
| Conversion time            | TCAD   | AN8(P70)<br>AN9(P71) | See cor    | nversion time calculation | 4.0 to 5.5          | 32              |         | 115             |      |
|                            |        | AN10(XT1)            | formula    | s. (Note 6-2)             | 3.0 to 5.5          | 64              |         | 115             | μs   |
|                            |        | AN11(XT2)            |            | AD division ratio=1/16    | 3.0 to 5.5          | 50              |         | 115             |      |
| Analog input voltage range | VAIN   |                      |            |                           | 3.0 to 5.5          | V <sub>SS</sub> |         | V <sub>DD</sub> | V    |
| Analog port input          | IAINH  |                      | VAIN=V     | 'DD                       | 3.0 to 5.5          |                 |         | 1               |      |
| current                    | IAINL  |                      | VAIN=V     | 'ss                       | 3.0 to 5.5          | -1              |         |                 | μΑ   |

#### <8-bits AD Converter Mode>

| Danamatan                  | 0      | Dia/Damanda          |         | O distance                |                     |                 | Specifi | cation          |      |
|----------------------------|--------|----------------------|---------|---------------------------|---------------------|-----------------|---------|-----------------|------|
| Parameter                  | Symbol | Pin/Remarks          |         | Conditions                | V <sub>DD</sub> [V] | min             | typ     | max             | unit |
| Resolution                 | N      | AN0(P00) to          |         |                           | 3.0 to 5.5          |                 | 8       |                 | bit  |
| Absolute accuracy          | ET     | AN7(P07)             | (Note 6 | -1)                       | 3.0 to 5.5          |                 |         | ±1.5            | LSB  |
| Conversion time            | TCAD   | AN8(P70)<br>AN9(P71) | See cor | nversion time calculation | 4.0 to 5.5          | 20              |         | 90              |      |
|                            |        | AN10(XT1)            | formula | s. (Note 6-2)             | 3.0 to 5.5          | 40              |         | 90              | μs   |
|                            |        | AN11(XT2)            |         | AD division ratio=1/16    | 3.0 to 5.5          | 31              |         | 90              |      |
| Analog input voltage range | VAIN   |                      |         |                           | 3.0 to 5.5          | V <sub>SS</sub> |         | V <sub>DD</sub> | ٧    |
| Analog port input          | IAINH  |                      | VAIN=\  | <sup>'</sup> DD           | 3.0 to 5.5          |                 |         | 1               | 4    |
| current                    | IAINL  |                      | VAIN=\  | 'ss                       | 3.0 to 5.5          | -1              |         |                 | μΑ   |

#### <Conversion time calculation formulas>

12-bits AD Converter Mode: TCAD (Conversion time) =  $((52/(AD \text{ division ratio}))+2) \times (1/3) \times \text{tCYC}$ 8-bits AD Converter Mode: TCAD (Conversion time) =  $((32/(AD \text{ division ratio}))+2) \times (1/3) \times \text{tCYC}$ 

## < Recommended Operating Conditions>

| External                | Supply Voltage               | System Clock         | Cycle Time | AD Frequency                                                                         | Conversion Tir | me (TCAD)[μs] |
|-------------------------|------------------------------|----------------------|------------|--------------------------------------------------------------------------------------|----------------|---------------|
| oscillator<br>FmCF[MHz] | Range<br>V <sub>DD</sub> [V] | Division<br>(SYSDIV) | tCYC [ns]  | AD Frequency Division Ratio (ADDIV)  1/16  52.125  1/8  34.8  1/16  69.5  1/8  52.25 | 8-bit AD       |               |
| 16                      | 3.0 to 5.5                   | 1/1                  | 187.5      | 1/16                                                                                 | 52.125         | 32.125        |
| 12                      | 4.0 to 5.5                   | 1/1                  | 250        | 1/8                                                                                  | 34.8           | 21.5          |
| 12                      | 3.0 to 5.5                   | 1/1                  | 250        | 1/16                                                                                 | 69.5           | 42.8          |
| 0                       | 4.0 to 5.5                   | 1/1                  | 375        | 1/8                                                                                  | 52.25          | 32.25         |
| 8                       | 3.0 to 5.5                   | 1/1                  | 375        | 1/16                                                                                 | 104.25         | 64.25         |

- Note 6-1: The quantization error  $(\pm 1/2LSB)$  must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Consumption Current Characteristics at Ta = -30 °C to +70 °C,  $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$ 

|                                                   |            | Pin/                                                          | 2 19                                                                                                                                                                  | , 22                |     | Specific | cation |      |
|---------------------------------------------------|------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|----------|--------|------|
| Parameter                                         | Symbol     | Remarks                                                       | Conditions                                                                                                                                                            | V <sub>DD</sub> [V] | min | typ      | max    | unit |
| Normal mode consumption current                   | IDDOP(1)   | V <sub>DD</sub> 1<br>=V <sub>DD</sub> 2<br>=V <sub>DD</sub> 3 | FmCF=12MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 12MHz side                                                 | 4.5 to 5.5          |     | 9.9      | 25     |      |
| (Note 7-1)                                        | IDDOP(2)   |                                                               | Internal PLL oscillation stopped     Internal RC oscillation stopped     USB circuit stopped     1/1 frequency division ration                                        | 3.0 to 3.6          |     | 5.7      | 14     |      |
|                                                   | IDDOP(3)   |                                                               | FmCF=16MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 16MHz side                                                 | 4.5 to 5.5          |     | 12       | 30     |      |
|                                                   | IDDOP(4)   |                                                               | Internal PLL oscillation stopped     Internal RC oscillation stopped     USB circuit stopped     1/1 frequency division ration                                        | 3.0 to 3.6          |     | 6.8      | 17     |      |
|                                                   | IDDOP(5)   |                                                               | FmCF=12MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 12MHz side                                                 | 4.5 to 5.5          |     | 14       | 35     |      |
|                                                   | IDDOP(6)   |                                                               | Internal PLL oscillation mode     Internal RC oscillation stopped     USB circuit active     1/1 frequency division ration                                            | 3.0 to 3.6          |     | 7.7      | 19     | •    |
|                                                   | IDDOP(7)   |                                                               | FmCF=16MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 16MHz side                                                 | 4.5 to 5.5          |     | 16       | 40     | mA   |
|                                                   | IDDOP(8)   |                                                               | Internal PLL oscillation mode     Internal RC oscillation stopped     USB circuit active     1/1 frequency division ration                                            | 3.0 to 3.6          |     | 8.8      | 22     |      |
|                                                   | IDDOP(9)   | 1                                                             | FmCF=12MHz ceramic oscillation mode                                                                                                                                   | 4.5 to 5.5          |     | 6.8      | 16     |      |
|                                                   | IDDOP(10)  | -                                                             | FsX'tal=32.768kHz crystal oscillation mode     System clock set to 6MHz side                                                                                          | 3.0 to 3.6          |     | 4.1      | 9.7    |      |
|                                                   | IDDOP(11)  | <del>-</del><br>                                              | Internal RC oscillation stopped     1/2 frequency division ration                                                                                                     | 2.7 to 3.0          |     | 3.5      | 7.9    |      |
|                                                   | IDDOP(12)  |                                                               | FmCF=16MHz ceramic oscillation mode                                                                                                                                   | 4.5 to 5.5          |     | 8.2      | 20     |      |
|                                                   | IDDOP(13)  | 1                                                             | FsX'tal=32.768kHz crystal oscillation mode     System clock set to 8MHz side                                                                                          | 3.0 to 3.6          |     | 4.7      | 12     |      |
|                                                   | IDDOP(14)  | -                                                             | Internal RC oscillation stopped     1/2 frequency division ration                                                                                                     | 2.7 to 3.0          |     | 4.0      | 9.2    |      |
|                                                   | IDDOP(15)  |                                                               | FmCF=0MHz (oscillation stopped)                                                                                                                                       | 4.5 to 5.5          |     | 0.73     | 3.5    |      |
|                                                   | IDDOP(16)  |                                                               | FsX'tal=32.768kHz crystal oscillation mode                                                                                                                            | 3.0 to 3.6          |     | 0.43     | 1.9    |      |
|                                                   | IDDOP(17)  |                                                               | <ul> <li>System clock set to internal RC oscillation</li> <li>1/2 frequency division ration</li> </ul>                                                                | 2.7 to 3.0          |     | 0.37     | 1.5    |      |
|                                                   | IDDOP(18)  | -                                                             | FmCF=0MHz (oscillation stopped)                                                                                                                                       | 4.5 to 5.5          |     | 45       | 174    |      |
|                                                   | IDDOP(19)  | <del>-</del><br>                                              | FsX'tal=32.768kHz crystal oscillation mode     System clock set to 32.768kHz side                                                                                     | 3.0 to 3.6          |     | 18       | 86     | μΑ   |
|                                                   | IDDOP(20)  |                                                               | Internal RC oscillation stopped                                                                                                                                       | 2.7 to 3.0          |     | 14       | 63     |      |
| HALT mode<br>consumption<br>current<br>(Note 7-1) | IDDHALT(1) | V <sub>DD</sub> 1<br>=V <sub>DD</sub> 2<br>=V <sub>DD</sub> 3 | 1/2 frequency division ration     HALT mode     FmCF=12MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 12MHz side | 4.5 to 5.5          |     | 4.9      | 12     |      |
| , , ,                                             | IDDHALT(2) |                                                               | Internal PLL oscillation stopped     Internal RC oscillation stopped     USB circuit stopped     1/1 frequency division ration                                        | 3.0 to 3.6          |     | 2.6      | 6.3    | mA   |

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

| Parameter              | Symbol      | Pin/<br>Remarks                                               | Conditions                                                                                                                                                        | \/ D/I                   | !   | Specific  |           |      |
|------------------------|-------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|-----------|-----------|------|
| HALT mode              | IDDHALT(3)  |                                                               | • HALT mode                                                                                                                                                       | V <sub>DD</sub> [V]      | min | typ       | max       | unit |
| consumption<br>current | IDDHALI(3)  | V <sub>DD</sub> 1<br>=V <sub>DD</sub> 2<br>=V <sub>DD</sub> 3 | FmCF=16MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode                                                                                | 4.5 to 5.5               |     | 5.7       | 14        |      |
| (Note 7-1)             | IDDHALT(4)  |                                                               | System clock set to 16MHz side     Internal PLL oscillation stopped     Internal RC oscillation stopped     USB circuit stopped     1/1 frequency division ration | 3.0 to 3.6               |     | 3.1       | 7.6       |      |
|                        | IDDHALT(5)  |                                                               | HALT mode     FmCF=12MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 12MHz side                               | 4.5 to 5.5               |     | 8.9       | 23        |      |
|                        | IDDHALT(6)  |                                                               | Internal PLL oscillation mode     Internal RC oscillation stopped     USB circuit active     1/1 frequency division ration                                        | 3.0 to 3.6               |     | 4.6       | 12        |      |
|                        | IDDHALT(7)  |                                                               | HALT mode     FmCF=16MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 16MHz side                               | 4.5 to 5.5               |     | 9.7       | 24        |      |
|                        | IDDHALT(8)  |                                                               | Internal PLL oscillation mode     Internal RC oscillation stopped     USB circuit active     1/1 frequency division ration                                        | 3.0 to 3.6               |     | 5.0       | 13        | mA   |
|                        | IDDHALT(9)  |                                                               | • HALT mode                                                                                                                                                       | 4.5 to 5.5               |     | 3.0       | 7.2       |      |
|                        | IDDHALT(10) | -                                                             | FmCF=12MHz ceramic oscillation mode     FsX'tal=32.768kHz crystal oscillation mode     System clock set to 6MHz side                                              | 3.0 to 3.6               |     | 1.6       | 3.8       |      |
|                        | IDDHALT(11) |                                                               | Internal RC oscillation stopped     1/2 frequency division ration                                                                                                 | 2.7 to 3.0               |     | 1.3       | 2.9       |      |
|                        | IDDHALT(12) | -                                                             | HALT mode     FmCF=16MHz ceramic oscillation mode                                                                                                                 | 4.5 to 5.5               |     | 3.5       | 8.6       |      |
|                        | IDDHALT(13) |                                                               | FsX'tal=32.768kHz crystal oscillation mode     System clock set to 8MHz side                                                                                      | 3.0 to 3.6               |     | 1.9       | 4.6       |      |
|                        | IDDHALT(14) | -                                                             | Internal RC oscillation stopped     1/2 frequency division ration                                                                                                 | 2.7 to 3.0               |     | 1.5       | 3.5       |      |
|                        | IDDHALT(15) |                                                               | • HALT mode                                                                                                                                                       | 4.5 to 5.5               |     | 0.41      | 2.0       |      |
|                        | IDDHALT(16) |                                                               | FmCF=0MHz (oscillation stopped)     FsX'tal=32.768kHz crystal oscillation mode                                                                                    | 3.0 to 3.6               |     | 0.20      | 0.93      |      |
|                        | IDDHALT(17) | -                                                             | System clock set to internal RC oscillation     1/2 frequency division ration                                                                                     | 2.7 to 3.0               |     | 0.16      | 0.69      |      |
|                        | IDDHALT(18) |                                                               | • HALT mode                                                                                                                                                       | 4.5 to 5.5               |     | 32        | 134       |      |
|                        | IDDHALT(19) | -                                                             | FmCF=0MHz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side                                                     | 3.0 to 3.6               |     | 8.8       | 60        |      |
|                        | IDDHALT(20) |                                                               | Internal RC oscillation stopped     1/2 frequency division ration                                                                                                 | 2.7 to 3.0               |     | 6.0       | 40        |      |
| HOLD mode              | IDDHOLD(1)  | V <sub>DD</sub> 1                                             | HOLD mode                                                                                                                                                         | 4.5 to 5.5               |     | 0.08      | 30        |      |
| consumption<br>current | IDDHOLD(2)  | 1                                                             | CF1=V <sub>DD</sub> or open (External clock mode)                                                                                                                 | 3.0 to 3.6               |     | 0.03      | 18        |      |
|                        | IDDHOLD(3)  | 4                                                             |                                                                                                                                                                   | 2.7 to 3.0               |     | 0.02      | 15        | μΑ   |
|                        | IDDHOLD(4)  | 4                                                             | HOLD mode     Internal counter watchdog timer operation                                                                                                           | 4.5 to 5.5               |     | 2.9       | 38        |      |
|                        | IDDHOLD(5)  | -                                                             | mode (internal low-speed RC oscillation circuit operation)                                                                                                        | 3.0 to 3.6<br>2.7 to 3.0 |     | 1.4       | 23        |      |
| Timer HOLD             | IDDHOLD(7)  | V <sub>DD</sub> 1                                             | CF1=V <sub>DD</sub> or open (External clock mode)     Timer HOLD mode                                                                                             | 1 E +0 E E               |     | 07        | 110       |      |
| I IIIOL I IOLD         |             | יטטי                                                          | CF1=V <sub>DD</sub> or open (External clock mode)                                                                                                                 | 4.5 to 5.5<br>3.0 to 3.6 |     | 27<br>6.1 | 118<br>51 |      |
| mode                   | IDDHOLD(8)  |                                                               |                                                                                                                                                                   |                          |     |           |           |      |

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

## USB Characteristics and Timing at Ta=0 °C to +70 °C, $V_{SS}1=V_{SS}2=V_{SS}3=0V$

| Parameter                            | Symbol               | Conditions                                                             | Specification |     |     |      |
|--------------------------------------|----------------------|------------------------------------------------------------------------|---------------|-----|-----|------|
| Parameter                            | Symbol               | Conditions                                                             | min           | typ | max | unit |
| High level output                    | V <sub>OH(USB)</sub> | • 15kΩ±5% to GND                                                       | 2.8           |     | 3.6 | V    |
| Low level output                     | VOL(USB)             | • 1.5kΩ±5% to 3.6 V                                                    | 0.0           |     | 0.3 | V    |
| Output signal crossover voltage      | VCRS                 |                                                                        | 1.3           |     | 2.0 | ٧    |
| Differential input sensitivity       | V <sub>DI</sub>      | •  (D+)-(D-)                                                           | 0.2           |     |     | ٧    |
| Differential input common mode range | Vсм                  |                                                                        | 0.8           |     | 2.5 | V    |
| High level input                     | V <sub>IH(USB)</sub> |                                                                        | 2.0           |     |     | V    |
| Low level input                      | V <sub>IL(USB)</sub> |                                                                        |               |     | 0.8 | ٧    |
| USB data rise time                   | t <sub>R</sub>       | • R <sub>S</sub> =27 to 33Ω,CL=50pF<br>• V <sub>DD</sub> 3=3.0 to 3.6V | 4             |     | 20  | ns   |
| USB data fall time                   | tF                   | • R <sub>S</sub> =27 to 33Ω,CL=50pF<br>• V <sub>DD</sub> 3=3.0 to 3.6V | 4             |     | 20  | ns   |

## **F-ROM Programming Characteristics** at $Ta = +10^{\circ}C$ to $+55^{\circ}C$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

| Danamatan                       | O. made ad | Di-               | Con distinct                                             |            | Specification |     |      |    |  |
|---------------------------------|------------|-------------------|----------------------------------------------------------|------------|---------------|-----|------|----|--|
| Parameter Symbol Pin Conditions |            | Conditions        | V <sub>DD</sub> [V]                                      | min        | typ           | max | unit |    |  |
| Onboard programming current     | IDDFW(1)   | V <sub>DD</sub> 1 | Excluding power dissipation in the microcontroller block | 3.0 to 5.5 |               | 5   | 10   | mA |  |
| Programming                     | tFW(1)     |                   | Erase operation                                          | 204-55     |               | 20  | 30   | ms |  |
| time                            | tFW(2)     |                   | Write operation                                          | 3.0 to 5.5 |               | 40  | 60   | μs |  |

### Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator at Ta = 0°C to +70°C

| Nominal Vendor |            | Oscillator Name    | Ciı        | rcuit Const | ant          | Operating<br>Voltage | Oscillation Stabilization Time |         | D I .      |  |
|----------------|------------|--------------------|------------|-------------|--------------|----------------------|--------------------------------|---------|------------|--|
| Frequency Name | C1<br>[pF] |                    | C2<br>[pF] | Rd1<br>[Ω]  | Range<br>[V] | typ<br>[ms]          | max<br>[ms]                    | Remarks |            |  |
| 8MHz           | MURATA     | CSTCE8M00G15L**-R0 | (33)       | (33)        | 680          | 2.7 to 5.5           | 0.1                            | 0.5     | C1 and C2  |  |
| 12MHz          | MURATA     | CSTCE12M0G15L**-R0 | (33)       | (33)        | 470          | 3.0 to 5.5           | 0.1                            | 0.5     | integrated |  |
| 16MHz          | MURATA     | CSTCE16M0V13L**-R0 | (15)       | (15)        | 330          | 3.0 to 5.5           | 0.05                           | 0.25    | SMD type   |  |

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- ullet Till the oscillation gets stabilized after  $V_{DD}$  goes above the operating voltage lower limit.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset.
- Till the oscillation gets stabilized after the X'tal HOLD mode is reset with CFSTOP (OCR register, bit 0) set to 0

## **Characteristics of a Sample Subsystem Clock Oscillator Circuit**

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

| Nominal Vendor |                  | Ossillator Nama | Circuit Constant |      |            |      | Operating<br>Voltage | Oscillation Stabilization Time |     | D                                         |  |
|----------------|------------------|-----------------|------------------|------|------------|------|----------------------|--------------------------------|-----|-------------------------------------------|--|
| Frequency      | Name             | Oscillator Name | С3               | C4   | Rf         | Rd2  | Range                | typ                            | max | Remarks                                   |  |
|                |                  |                 | [pF]             | [pF] | $[\Omega]$ | [Ω]  | [V]                  | [s]                            | [s] |                                           |  |
| 32.768kHz      | EPSON<br>TOYOCOM | MC-306          | 18               | 18   | OPEN       | 560k | 2.7 to 5.0           | 1.1                            | 3.0 | Applicable<br>CL value=12.5pF<br>SMD type |  |

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after the instruction for starting the subclock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset with EXTOSC (OCR register, bit 6) set to 1

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

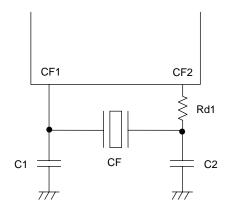
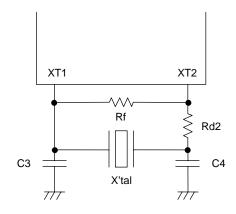



Figure 1 CF Oscillator Circuit



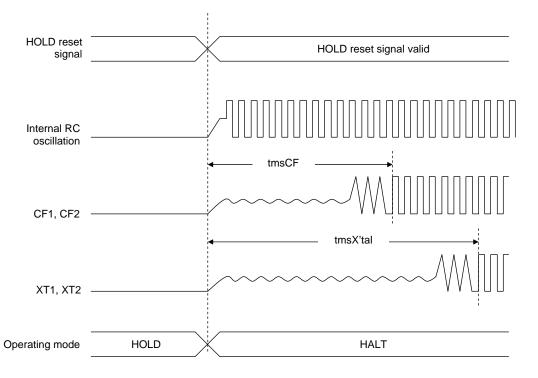
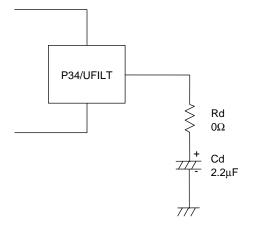


Figure 2 XT Oscillator Circuit



Figure 3 AC Timing Measurement Point




Reset Time and Oscillation Stabilization Time



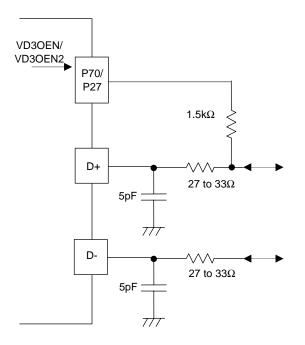
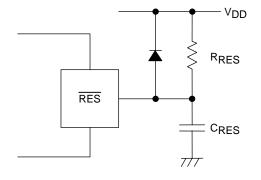

**HOLD** Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Time



When using the internal PLL circuit to generate the 48 MHz clock for USB , it is necessary to connect a filter circuit such as that shown to the left to the P34/UFILT pin.


Figure 5 External Filter Circuit for the Internal USB-dedicated PLL Circuit



#### Note:

It's necessary to adjust the Circuit Constant of the USB Port Peripheral Circuit each mounting board. Make the D+ Pull-up resistors available to control on/off according to the Vbus.

Figure 6 USB Port Peripheral Circuit



#### Note:

Determine the value of CRES and RRES so that the reset signal is present for a period of 200µs after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 7 Reset Circuit

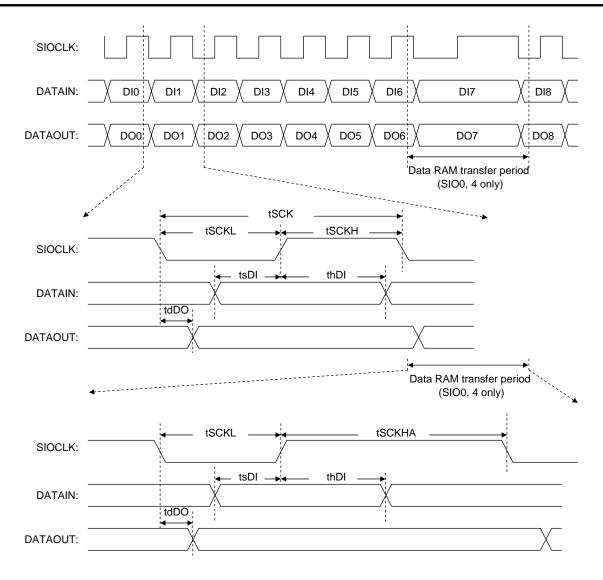



Figure 8 Serial I/O Waveforms

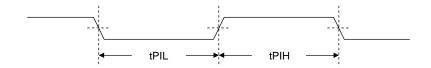



Figure 9 Pulse Input Timing Signal Waveform

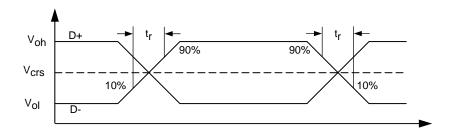



Figure 10 USB Data Signal Timing and Voltage Level

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2008. Specifications and information herein are subject to change without notice.